

Constellation-X SXT Mirror

R. Petre

NASA/ GSFC

The SXT team

W. Zhang, K-.W. Chan, D. Content, D. Nguyen, C. Odell, T. Saha, Y. Soong, P. Serlemitsos, J. Stewart (GSFC)

M.Schattenburg, R. Heilmann, X. Sun (MIT)

L. Cohen, W. Davis, R. Rasche (SAO)

S. O'Dell, D. Goodman, W. Jones (MSFC)

R. Harms (RJH Scientific)

Segmented SXT Mirror

Outline

SXT Program Overview R. Petre

Engineering UnitR. Petre (for J. Stewart)

MetrologyR. Petre (for D. Content)

Glass Forming ProcessW. Zhang

Alignment BarsX. Sun

MSFC SupportS. Odell

Constellation-X Summary Technology Roadmap

X-ray Calorimeters

Cryocoolers

Grating/CCD

Hard X-ray Telescope

SXT Phased Development

Engineering Unit

Single inner module with

- 0.5 m dia. reflector pair

(replicated from Zeiss

precision mandrel)

- Parabolic (P) and

Prototype Unit

Outer Modules (2)

Flight Scale Assembly of

- 3 modules (2 outer and 1 inner)
- Largest diameter same as for flight -1.6 m
- Each module has 3 to 9 reflector pairs
- Demonstrates module to module alignment

Flight Unit Reflectors

Full flight Assembly

Housing

- 1.6 m outer diameter
- 18 Small Modules
- 70 to 170 reflector diameters

using etched silicon microcombs

- First modules to be aligned

Hyperbolic (H) submodules

SXT Optic Technology Roadmap

SXT Optic Critical Technology Milestone

\Diamond

SXT Optic Engineering Unit Completed and Tested in X-rays

- Alignment comb fabrication process verified.
- Assembly and alignment procedures established.
- Optical performance understood and extendable to 10 arc sec.
- Replication process satisfies requirements and is reproducible.
- Reflector support concept verified.
- Preliminary mechanical testing satisfactorily completed.

SXT Engineering Unit

- Goal is to approach Con-X resolution requirement in unit incorporating all aspects of SXT flight system
 - Precisely formed segments
 - Etched Si alignment bars
 - Flight assembly and metrology approach
- EU is flight-like size (inner module)
- Utilizes existing Zeiss metal mandrels
 - (50 cm dia.; 8.4 m f.l.; 5" surface)
- Phased build up, with increasing complexity
- Units will be tested in X-rays and subjected to environmental testing

SXT Development Units

AEU #1

- Aluminum Engineering Unit (AEU) aluminum housing
- One pair of reflectors (one P and one matching H).

AEU #2

- Aluminum housing
- Three pairs of reflectors (three P and three matching H)

CEU#1

- Composite housing
- Three Pairs of reflectors (three P and three matching H)

Prototype

- One inner module and two outer modules with composite housings
- Each module has 3 sets of 3 reflector pairs (27 pairs; 18 different radii)

SXT Engineering Unit

EU Assembly

Strut Installation

EU Assembly

Optic Installation

C-X SXT Engineering Unit -

Update on metrology

- D. Content

Technical summary:

- Proposed metrology on individual reflectors, in priority order
 - form (e.g. cone angle/ radius measurements) Moore#3 {ready}
 - axial figure -- Wyko400 or Zygo MkIV interferometers {available, need to set up 20cm collimator for EU scale tests}
 - micro and nano roughness Microroughness on foils or 20cm mandrels now available in B2, 2 devices in B5; Topo3d upgrade for 50cm mandrels is in design phase now; nano roughness metrology is a low priority
 - circumferential figure -- Moore #3 may be required, as errors too large for interferometer on sample part measured recently {ready}
 - midfrequency -- not a driver at this time use current Bauer and/or subaperture interferometry (lateral resolution down to < 1 mm)
- Form and figure metrology on the EM
 - same as above work to allow axial figure metrology in situ either w/ interferometers or Moore#3
- Main lack right now is a holding fixture for 1000:1 aspect ratio foils
 - Without fixturing, there is a strong tendency to measure your mounting condition and not the unstressed condition of the foil
 - This is being addressed now

Segmented SXT Mirror

Issues

Technical

- Limits of substrate (available size, usable size, thickness required, ultimate figure attainable)
- Increasing complexity of fixturing
- Completeness and accuracy of metrology approach

Programmatic

- Ambitious program development timescale hampered by lack of funds
- Cost and production rate of mandrels
- Availability of industrial partner to carry out mirror production